Proof that sin(ax^2) ~ ax^2 as x->0 ?

At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get our expert's

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this and thousands of other questions.

A community for students.

Proof that sin(ax^2) ~ ax^2 as x->0 ?

Mathematics
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get this expert

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this and thousands of other questions

To make it look nicer, a proof of: \[\sin (ax^2)\sim ax^2, x \to 0\]
same as \[\lim_{x\to 0}\frac{\sin(ax^2)}{ax^2}=1\] many methods but if you know that \[\lim_{x\to 0}\frac{\sin(x)}{x}=1\] then this is identical
Well, a proof without l'Hospitals rule, I mean, I can prove the rule and I can prove the latter case trigonometrically and using IVT... but I want a nice, semi-rigorous algebraic proof of this... because I have no clue, how I would derive the former from the latter case.

Not the answer you are looking for?

Search for more explanations.

Ask your own question

Other answers:

algebra will not do it because you have a trig function
Sorry, let me say it more precisely, a proof that does not require analysis, differentiation, or use of other, largely non-trivial methods, other than a) Geometrical arguments, b) Manipulation of the latter case, stated three posts ago. I hope I was more precise, now.
|dw:1346562207346:dw|
sinx*cosx/2
areas of triangles
Yes, but what about sin(ax^2)?

Not the answer you are looking for?

Search for more explanations.

Ask your own question