Here's the question you clicked on:
experimentX
Show that the determinant and trace of Matrix remains invariant under similarity transformation
\[ det( A^{-1} B A) =det(A^{-1}) det(B) det(A)=\frac 1 {det(A)}det(B) det (A) =det(B) \] Can you do the trace?
Use that trace(MN)=trace(NM)
\[ trace(A^{-1} B A)=trace( A^{-1} A B)=trace(B) \]