ParthKohli
  • ParthKohli
More differentiation problems with quotient rule. I'm going to type out the question along with the answer. Thanks for the patience :)
Mathematics
  • Stacey Warren - Expert brainly.com
Hey! We 've verified this expert answer for you, click below to unlock the details :)
SOLVED
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
katieb
  • katieb
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
ParthKohli
  • ParthKohli
I'd need you guys to check it in a minute.
ParthKohli
  • ParthKohli
\[h(x) = {4\sqrt{x }\over x^2 - 2} \]\[h'(x) = {{(4\sqrt{x})'(x^2 - 2) - (4\sqrt{x})(x^2 - 2)'}\over (x^2 - 2)^2 } \]\[\implies\qquad{2x^{-1 \over 2} (x^2 - 2) - (4\sqrt{x})(2x) \over (x^2 - 2)^2} \]More steps coming.
ParthKohli
  • ParthKohli
\[\implies{(2x^{3 \over 2} - 4x^{-1 \over 2}) - 8x^{3 \over 2} \over (x^2 - 2)^2} \]

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

ParthKohli
  • ParthKohli
\[\implies {{-6x^{3 \over 2}} - {4x^{1 \over 2} }\over(x^2 - 2)^2} \]
ParthKohli
  • ParthKohli
Can I simplify it more?
cwrw238
  • cwrw238
you can factorise the numerator i suppose
ParthKohli
  • ParthKohli
Oh, yes. Is there anything else?
KingGeorge
  • KingGeorge
Using wolfram, I'm not getting the same answer as that
ParthKohli
  • ParthKohli
Oh... I might be wrong in that case.
ParthKohli
  • ParthKohli
Can we integrate that and check?
cwrw238
  • cwrw238
i cant see any problem with your answer
KingGeorge
  • KingGeorge
\[\Large{(2x^{3 \over 2} - 4x^{-1 \over 2}) - 8x^{3 \over 2} \over (x^2 - 2)^2} \\ =(2x^{3 \over 2} -8x^{3 \over 2} ) - 4x^{-1 \over 2} \over (x^2 - 2)^2\\={{-6x^{3 \over 2}} - {4x^{-\frac{1}{2}} }\over(x^2 - 2)^2}\]
ParthKohli
  • ParthKohli
So then am I correct?
KingGeorge
  • KingGeorge
Your exponent on the 4 was positive when it was supposed to be negative.
ParthKohli
  • ParthKohli
Oh, I mistakenly made that positive when it was negative in the previous step. *close enough*
cwrw238
  • cwrw238
oh yes - just a typo
KingGeorge
  • KingGeorge
You can then factor the \[\frac{1}{\sqrt{x}}\]out, and make it look significantly simpler.
ParthKohli
  • ParthKohli
Thank you again!
cwrw238
  • cwrw238
well done parth - just a human error
ParthKohli
  • ParthKohli
Thank you @cwrw238. Your encouragement much appreciated.
KingGeorge
  • KingGeorge
\[\Large {{-6x^{3 \over 2}} - {4x^{-\frac{1}{2}} }\over(x^2 - 2)^2}\\ \Large =\frac{1}{\sqrt{x}}{{-6x^2} - {4 }\over(x^2 - 2)^2}\\ \Large =\frac{-6x^2-4}{\sqrt{x}(x^2-2)^2}\]Then if you want, you can factor a -2 out of the top as well, but this is as much as it simplifies.
ParthKohli
  • ParthKohli
OK sir. Thank you for your help.

Looking for something else?

Not the answer you are looking for? Search for more explanations.