• anonymous
I have a question about existence and uniqueness. It says that if f(x,y)=dy/dx and partialf/partialy are both continuous on the xy plane, then there is one and ony one solution etc... My question is, how can you tell if the function f and the partial derivative are continuous on the xy plane if they aren't even functions in the xy plane. They are functions in 3 space. You cannot even graph dy/dx= f(x,y). For instance, if dy/dx== 2y/x, that is not in the xy plane. That is a function of 2 variables in 3 space. I am confused?
MIT 18.03SC Differential Equations
  • Stacey Warren - Expert
Hey! We 've verified this expert answer for you, click below to unlock the details :)
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
  • chestercat
I got my questions answered at in under 10 minutes. Go to now for free help!
  • anonymous
This statement of the theorem might be helpful to you: (For f and its partials you are considering a selection of inputs which you are interested in.) The function f which you gave is not continuous at (0, y) because it is not defined there. Since f is a rational function, it is continuous on its domain, so, for x and y any reals except x=0. For a function of 2 variables to be continuous at a point, you must have: f(a,b) exists, and \[\lim_{(x,y) \rightarrow (a,b)} f(x,y)\] exists, and \[\lim_{(x,y) \rightarrow (a,b)} f(x,y) = f(a,b)\] (This must hold as the (x,y) approaches (a,b) along any direction or path.)

Looking for something else?

Not the answer you are looking for? Search for more explanations.