Quantcast

A community for students. Sign up today!

Here's the question you clicked on:

55 members online
  • 0 replying
  • 0 viewing

Ishaan94

  • 2 years ago

Problem.

  • This Question is Open
  1. Ishaan94
    • 2 years ago
    Best Response
    You've already chosen the best response.
    Medals 0

    |dw:1346780861941:dw| At \(t=0\) B starts chasing A, with velocity \(v\), A's velocity \(u\) is always in the horizontal direction. \(a\). Find the time at which A will catch up to B assuming A's velocity is large enough. \(b\). If \(u = v\) then find the shortest distance between A and B during the motion.

  2. Ishaan94
    • 2 years ago
    Best Response
    You've already chosen the best response.
    Medals 0

    And the initial separation between A and B is \(d\).

  3. Ishaan94
    • 2 years ago
    Best Response
    You've already chosen the best response.
    Medals 0

    I got to go now, I will come back later. Good luck :-)

  4. henpen
    • 2 years ago
    Best Response
    You've already chosen the best response.
    Medals 0

    So...many...variables...

  5. henpen
    • 2 years ago
    Best Response
    You've already chosen the best response.
    Medals 0

    The answer is one link deeper than http://www.physicsforums.com/showthread.php?t=232532, but I couldn't look.

  6. henpen
    • 2 years ago
    Best Response
    You've already chosen the best response.
    Medals 0

    Everything seems to be a function of everything else. Do you have any idea what the 'base unit/variable' here is? If you determine that, the problem (I think) would become easy.

  7. Not the answer you are looking for?
    Search for more explanations.

    • Attachments:

Ask your own question

Ask a Question
Find more explanations on OpenStudy

Your question is ready. Sign up for free to start getting answers.

spraguer (Moderator)
5 → View Detailed Profile

is replying to Can someone tell me what button the professor is hitting...

23

  • Teamwork 19 Teammate
  • Problem Solving 19 Hero
  • You have blocked this person.
  • ✔ You're a fan Checking fan status...

Thanks for being so helpful in mathematics. If you are getting quality help, make sure you spread the word about OpenStudy.

This is the testimonial you wrote.
You haven't written a testimonial for Owlfred.