Ace school

with brainly

  • Get help from millions of students
  • Learn from experts with step-by-step explanations
  • Level-up by helping others

A community for students.

If you have a function, f, in cylindrical coordinates, can you normalize the function (in a rigorous sense)? \[f(r,\phi,z)=a*r^{"^"}+b*\phi ^{"^"}+c*z^{"^"}\] You can find the magnitude by \[\sqrt{a^2+c^2}\] but can you truly normalize the function and apply that to a mathematical formula which requires the normalized vector. Or do you have to transform back to rectangular coordinates before normalizing? I have looked through several textbooks and the internet and cannot find anything about normalizing a vector in the cylindrical system.

OCW Scholar - Multivariable Calculus
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Join Brainly to access

this expert answer

SIGN UP FOR FREE
What do you mean by "in a rigorous sense"? I would be interested to see what others think, but what you are describing seems okay to me: The norm of a vector, in the case of a 3-D vector, like here, is its length. To normalize a vector, you divide the vector by its norm, creating a unit vector with the same direction as the original vector. So to normalize a 3-D vector, you would divide the vector by its length. Thus it seems that \[g=f(r,\theta,z)/\sqrt{a^{2}+c^{2}}\] would be the normalized function, as you have suggested. Again, I do not know if this is "rigorous" enough.

Not the answer you are looking for?

Search for more explanations.

Ask your own question

Other answers:

Not the answer you are looking for?

Search for more explanations.

Ask your own question