experimentX
  • experimentX
Evaluate: given that b > a \[ \int_0^\infty {x^{a-1} \over 1 + x^b}\; dx\]
Mathematics
  • Stacey Warren - Expert brainly.com
Hey! We 've verified this expert answer for you, click below to unlock the details :)
SOLVED
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
jamiebookeater
  • jamiebookeater
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
anonymous
  • anonymous
*
experimentX
  • experimentX
man ... I stuck at finding the simple residue.
anonymous
  • anonymous
if my memory serves me, it is the numerator divided by the derivative of the denominator evaluated at the pole

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

experimentX
  • experimentX
yeah you are correct ... had trouble fixing. \[ \huge \lim_{z \rightarrow e^{i \pi \over b}} {(z - e^{i{\pi }\over b}) z^{a-1} \over 1 + z^b} = \lim_{z \rightarrow e^{i \pi \over b}} {z^{a-1} \over -bz^{b-1}}\]
experimentX
  • experimentX
|dw:1346858176216:dw| somehow it got this fixed. I had this Q on my exam paper ... Man i couldn't do it.

Looking for something else?

Not the answer you are looking for? Search for more explanations.