Here's the question you clicked on:

55 members online
  • 0 replying
  • 0 viewing

experimentX

  • 3 years ago

Evaluate: \[ \huge \int_{-\infty}^\infty {e^{ax} \over 1 + e^x} \; dx\] EDIT:: 0 < a < 1

  • This Question is Closed
  1. bhaweshwebmaster
    • 3 years ago
    Best Response
    You've already chosen the best response.
    Medals 0

    IS your question right? @experimentX ... U sure that it is e^ax at one place and e^x at the other...??

  2. CliffSedge
    • 3 years ago
    Best Response
    You've already chosen the best response.
    Medals 0

    mmm, \huge tags...

  3. hartnn
    • 3 years ago
    Best Response
    You've already chosen the best response.
    Medals 1

    *

  4. experimentX
    • 3 years ago
    Best Response
    You've already chosen the best response.
    Medals 0

    contour integrals ... complex analysis.

  5. bhaweshwebmaster
    • 3 years ago
    Best Response
    You've already chosen the best response.
    Medals 0

    Okay..

  6. mukushla
    • 3 years ago
    Best Response
    You've already chosen the best response.
    Medals 0

    *

  7. experimentX
    • 3 years ago
    Best Response
    You've already chosen the best response.
    Medals 0

    let e^x = u, -inf ->0 +inf -> +inf dx = u^-1 du the whole problem reduces to which is the special case of my previous problem \[ \int_0^\infty {u^{a-1} \over 1 + u} \;du\]

  8. experimentX
    • 3 years ago
    Best Response
    You've already chosen the best response.
    Medals 0

    interesting problem http://math.stackexchange.com/questions/110494/possibility-to-simplify-sum-limits-k-infty-infty-frac-left

  9. Not the answer you are looking for?
    Search for more explanations.

    • Attachments:

Ask your own question

Sign Up
Find more explanations on OpenStudy
Privacy Policy