anonymous
  • anonymous
Problem Set 1, 1H-3 (c), Can someone help me with this? The solution y=[e^x+-(e^x^2+4x^x)^1/2]/2 Is there a straight forward way to deduce that y-1<0? Thanks a lot!
OCW Scholar - Single Variable Calculus
  • Stacey Warren - Expert brainly.com
Hey! We 've verified this expert answer for you, click below to unlock the details :)
SOLVED
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
katieb
  • katieb
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
anonymous
  • anonymous
You have mistakenly written < 0, it's y-1 > 0 Deduced like this \[2\ln y = \ln{(y+1)+x}\] \[\rightarrow 2\ln y - \ln(y+1)= x\] \[\rightarrow \ln y^2- \ln(y+1) = x\] \[\rightarrow \ln(\frac{y^2}{y+1})=x\] exponentiate \[\frac{y^2}{y+1}= e^x\] Now because e to the x is ALWAYS greater than ZERO we have \[e^x > 0\] so then must \[\frac{y^2}{y+1}> 0\rightarrow y^2>0\rightarrow y>0\] Now if \[y>0\] and \[e^x > 0\] then ( and this is important ) \[e^x \cdot y > e^x\] So divide both sides by \[e^x\] \[y > 1 \rightarrow y -1 > 0\] And thus we have shown that infact \[y-1 > 0\]
anonymous
  • anonymous
Thank you so much! It's the multiplying both side by e^x that I didn't know! Great help!
anonymous
  • anonymous
Sorry to bother you again: but how is it that e^xy>e^x again? if 0

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

anonymous
  • anonymous
if \[e^x > 0\] and \[y>0\] and also from the equation we are given \[y^2 = e^xy + e^x\] we can deduce that y is greater than e^x because it takes something (positive) to be added to e^xy to EQUAL y squared. So if \[y>e^x\] it means that \[e^xy > e^x\] because ANYTHING multiplied by something greater than itself will be greater than itself.
anonymous
  • anonymous
Sorry about that, should have thought of it by myself, feeling really dumb right now!
anonymous
  • anonymous
Never let math make you feel 'dumb', it all depends on where your mind is at in a moment in time. This is why mathematics is so complicated, your expected to take so many many things into account all at once! However its moments like these that help some things 'stick' and for it to always be in the forefront of your memory. Never has it been more true than with mathematics, the saying 'we learn by our mistakes'! And remember that 'forgetting' is NOT 'dumb' or 'stupid', it's never being able to 'understand' something that is the problem!

Looking for something else?

Not the answer you are looking for? Search for more explanations.