anonymous
  • anonymous
1) Prove that if A and B are countable, then \[A \cap B\] is also countable. 2) Prove A\(A\B)=B\(B\A)
Mathematics
chestercat
  • chestercat
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get this expert

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this
and thousands of other questions

anonymous
  • anonymous
A n B can never be greater than A and B ........ So 0<=A n B <=A and 0<=A n B <=B...... THus, if A and B are countable ......... A n B is also countable
anonymous
  • anonymous
|dw:1346927959015:dw|
anonymous
  • anonymous
@cinar Can we use Venn Diagrams to prove it? @sauravshakya I think for question 1 and 2, they are about the topic ''sets''.

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

anonymous
  • anonymous
@Rolypoly no we cant use venn diagrams
helder_edwin
  • helder_edwin
\(\setminus\) is not division !!!!!!!!!!!!!!!!!!!!!!!!!!
helder_edwin
  • helder_edwin
\[ \large A\setminus(B\setminus A)=A\cap(B\cap A^c)^c=A\cap(B^c\cup A)=A \] on the other hand \[ \large B\setminus(B\setminus A)=B\cap(B\cap A^c)^c=B\cap(B^c\cup A)= \] \[ \large = (B\cap B^c)\cup(B\cap A)=B\cap A \] they are not equal. unless \(A\subseteq B\).
anonymous
  • anonymous
\[A-(B-A)=A \cap B \]
anonymous
  • anonymous
\[B-(B-A)=A \cap B\]
anonymous
  • anonymous
this is a true statement, I just dont know how to prove it..
helder_edwin
  • helder_edwin
Let \(A=\{a,b,c,d,e\}\) and \(B=\{a,i,u,e,o\}\) then \[ \large A\setminus(B\setminus A)=A\setminus\{i,u,o\}=A \] and \[ \large B\setminus(B\setminus A)=B\setminus\{i,u,o\}=\emptyset \]
helder_edwin
  • helder_edwin
IT IS NOT TRUE !!!!!!!!!!!!!
anonymous
  • anonymous
sorry there is a typo the question is Prove A\(A\B)=B\(B\A)
helder_edwin
  • helder_edwin
\[ \large A\setminus(A\setminus B)=A\cap(A\cap B^c)^c=A\cap(A^c\cup B) \] \[ \large =(A\cap A^c)\cup(A\cap B)=A\cap B \]

Looking for something else?

Not the answer you are looking for? Search for more explanations.