Open study

is now brainly

With Brainly you can:

  • Get homework help from millions of students and moderators
  • Learn how to solve problems with step-by-step explanations
  • Share your knowledge and earn points by helping other students
  • Learn anywhere, anytime with the Brainly app!

A community for students.

Let m and n be two positive integers. Show that (36 m+ n)(m+36 n) cannot be a power of 2.

Meta-math
See more answers at brainly.com
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Join Brainly to access

this expert answer

SIGN UP FOR FREE
LET (36m+n)=2^x AND (m+36n)=2^y THEN, (36m+n)(m+36n)=2^(x+y) AlSO, x and y must me both integers
Now, n=2^x - 36m THEN, m+36n=2^y m+36(2^x-36m)=2^y 36 * 2^x -1295m=2^y
Now, I think I have to prove that y is never a integer

Not the answer you are looking for?

Search for more explanations.

Ask your own question

Other answers:

2^y=36*2^x-1295m 2^y=2^x(36-1295m/2^x) Now, 2^y must be positive so, (36-1295m/2^x) must be positive... Now let 2^z=36-1295m/2^x HERE z also must be an positive integer..... So, 2^z can be 4,8,16,32 NOW,
36-1295m/2^x= 4, 8, 16, 32 1295m/2^x=32, 28 ,16 ,4 2^x=1295m/32 , 1295m/28 , 1295m/16 , 1295m/4
Now, 2^x=1295m/32 , 1295m/28 , 1295m/16 , 1295m/4 2^x=40.47 m , 46.25m , 80.94m ,323.75m Thus, for no positive integer value of m we will get x a integer value......
Hence, (36 m+ n)(m+36 n) cannot be a power of 2.
I have jumped some step......... I hope I made it clear
for \(m=n\) the statement is true suppose \(m\ge n\) in order for \((36 m+ n)(m+36 n)\) to be a power of \(2\) \[36m+n=2^a\]\[m+36n=2^b\]\[a> b\]\[\frac{36m+n}{m+36n}=2^{a-b}=2^c \ \ \ c\ge 1\]\[m+36n | 36m+n\]\[m+36n|36(m+36n)-(36m+n)=1295n\]since \(\gcd(m+36n \ , \ n)=1\) so \(m+36n\) is a divisor of \(1295\) so \((36 m+ n)(m+36 n)\) is not a power of 2
looks like gcd is very important ... i never liked it.
Here is my proof. Suppose not, let m and n be the smallest such that this product is a power of 2. It is easy to see that m and n are divisible by 2. So m = 2 M and n = 2 N. Since ( 36 (2M) + 2 N)(36(2N)+2 M) is a power of 2,then ( 36 ( M) + N)(36( N+ M) is a power of 2 (contradiction).
Short and Neat :)

Not the answer you are looking for?

Search for more explanations.

Ask your own question