Open study

is now brainly

With Brainly you can:

  • Get homework help from millions of students and moderators
  • Learn how to solve problems with step-by-step explanations
  • Share your knowledge and earn points by helping other students
  • Learn anywhere, anytime with the Brainly app!

A community for students.

if\[f'(x)=\frac{1}{1+x+x^2+x^3}\],\[g'(x)=-\frac{x}{1+x+x^2+x^3}\]and \(f(0)=g(0)\) Find value of \(f(1)-g(1)\)

OCW Scholar - Single Variable Calculus
I got my questions answered at in under 10 minutes. Go to now for free help!
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get this expert

answer on brainly


Get your free account and access expert answers to this and thousands of other questions

The Rational Zero Theorem suggests that (x-1) or (x+1) may be factors of the denominators. Using polynomial long division (or synthetic division) indicates that (x+1) is a factor. Use the resulting factored denominator with partial fraction decomposition to break both functions into something that can be integrated. Integrate both functions with separately marked added constants (I used subscript f and g). Set f(x)=g(x) substituting x=0 in for both functions to find what the constants should be. You won't find the exact constants, but you will see how they relate to each other. Now substitute x=1 into f(x)-g(x). Would you like the thrill of discovery, or would you like to see my details?
\[ f(1)-g(1)=\arctan 1\]
Not exactly what I got... but close

Not the answer you are looking for?

Search for more explanations.

Ask your own question

Other answers:

hey... I think you are right...arctan x with x=1... yup. I incorrectly put x^2+1 into my argument, but it should be just x...nice!
arctan 1=pi/4

Not the answer you are looking for?

Search for more explanations.

Ask your own question