Here's the question you clicked on:
blackrose636
find lim [sin^2(-)/(-)(1+cos(-))] (-)->0
\[\lim_{x \rightarrow 0} \frac{\sin^2 x}{x(1+\cos x)}\]?
but how did u guys get 0
the limit as x->0 for sin(x)/x is equal to 1 its a general rule of thumbs
\[\lim_{x \rightarrow 0}\frac{\sin x}{x}=1\] \[\lim_{x \rightarrow 0}\frac{\sin^2(x)}{(x)(1+\cos(x))}\] \[\lim_{x \rightarrow 0}\frac{\sin(x)}{(x)}*\lim_{x \rightarrow 0}\frac{\sin(x)}{(1+\cos(x))}\] \[1*\lim_{x \rightarrow 0}\frac{\sin(x)}{(1+\cos(x))}\] sin(0)=0 cos(0)=1