anonymous
  • anonymous
ok a nice one Find all Pairs \((m,n)\) of positive integers such that\[\frac{n^2+1}{mn-1}\]is an integer too.
Meta-math
  • Stacey Warren - Expert brainly.com
Hey! We 've verified this expert answer for you, click below to unlock the details :)
SOLVED
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
chestercat
  • chestercat
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
anonymous
  • anonymous
m=2, n=3 , ratio=2 n=2, m=3, ratio=1
anonymous
  • anonymous
m=1,n=2 m=1,n=3
anonymous
  • anonymous
still missing some of solutions

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

asnaseer
  • asnaseer
I got these: m=1, n=2, ratio=5 m=1, n=3, ratio=5 m=2, n=1, ratio=2 m=2, n=3, ratio=2 m=3, n=1, ratio=1 m=3, n=2, ratio=1
anonymous
  • anonymous
quite right
asnaseer
  • asnaseer
I used a method where I assumed m = n + p and drew conclusions from the resulting equations
asnaseer
  • asnaseer
integer solutions could only exist if p=1, 2, -1 or -2
asnaseer
  • asnaseer
I'd be interested to know if there is another way of doing this
anonymous
  • anonymous
i'd like also to see ur reasoning @asnaseer
asnaseer
  • asnaseer
sure - let me type it up for you...
asnaseer
  • asnaseer
let m = n + p where p is some other integer (negative, zero or positive), then we have:\[\frac{n^2+1}{mn-1}=\frac{n^2+1}{(n+p)n-1}=\frac{n^2+1}{n^2+np-1}\]for this expression to yield an integer, we must satisfy at least this:\[n^2+1\ge n^2+np-1\]\[\therefore1\ge np-1\]\[\therefore2\ge np\]\[\therefore n\le\frac{2}{p}\]
asnaseer
  • asnaseer
if p is negative, then this inequality becomes:\[n\gt\frac{2}{p}\]which then gives us:\[p=2\implies n\le1\implies n=1\]\[p=1\implies n\le2\implies n=1\text{ or }2\]\[p=-1\implies n\gt-2\implies n=1,2,3...,\infty\]\[p=-2\implies n\gt-1\implies n=1,2,3,...,\infty\]
asnaseer
  • asnaseer
I then took each case and created a table to see which combinations gave a valid integer ratio
asnaseer
  • asnaseer
e.g. p=2, n=1, m=n+p=1+2=3, ratio=1
asnaseer
  • asnaseer
hope there isn't a flaw in my reasoning?
anonymous
  • anonymous
i enjoyed seeing ur solution...
asnaseer
  • asnaseer
thx :)
asnaseer
  • asnaseer
do you have an alternative method?
anonymous
  • anonymous
yes its a little bit longer than this.
asnaseer
  • asnaseer
ok - I won't push you to post it, but if you could (even a scan of paper written solution) then I would really appreciate it.
anonymous
  • anonymous
sure...i'll post it later. :) Nice to see this group alive again.
asnaseer
  • asnaseer
thx - and yes - finally it awakes! :)
anonymous
  • anonymous
{m,n,ratio} {{1, 2, 5}, {1, 3, 5}, {2, 1, 2}, {2, 3, 2}, {3, 1, 1}, {3, 2, 1}}
anonymous
  • anonymous
just a neat pint about this problem if \[mn-1|n^2+1\]so\[mn-1|m^2n^2-1+n^2+1=n^2(1+m^2)\]\[mn-1|1+m^2\]so if \((m,n)\) is answer \((n,m)\) will be answer
anonymous
  • anonymous
*point
anonymous
  • anonymous
n=1 gives m=2,3 so 4 answers from here : (1,2),(1,3),(2,1),(3,1) no answer for m=n suppose m>n\[kn-1=\frac{n^2+1}{mn-1}<\frac{n^2+1}{n^2-1}=1+\frac{2}{n^2-1}<2\]\[kn<3\]\[n=2 , k=1\]gives m=3 so 2 solution from here (2,3),(3,2)
anonymous
  • anonymous
but why \[\frac{n^2+1}{mn-1}=kn-1\]\[\frac{n^2+1}{mn-1}=r\]its easy to show that\[r\equiv-1 \ \ \text{mod} \ n\]

Looking for something else?

Not the answer you are looking for? Search for more explanations.