anonymous
  • anonymous
Roots of quadratic:
Mathematics
  • Stacey Warren - Expert brainly.com
Hey! We 've verified this expert answer for you, click below to unlock the details :)
SOLVED
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
chestercat
  • chestercat
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
anonymous
  • anonymous
if α and β are the roots of equation 4x^2 - 2x - 1 = 0, find α - β
RadEn
  • RadEn
use formula : α - β = | (sqrt(D)/a) | with D=b^2-4ac
anonymous
  • anonymous
oh yeah... forgot to put - without finding the roots So like using αβ = c/a and α+β=-b/a

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

RadEn
  • RadEn
right, but ur problem to find value of α - β?
anonymous
  • anonymous
yes. find α - β
RadEn
  • RadEn
we know that general form of a quadratic equation is ax^2+bx+c=0 so, we can find α - β with formula : α - β = abs(sqrt(D)/a)
ParthKohli
  • ParthKohli
You can always count on finding the roots and assuming them as \(\alpha, \beta\).
ParthKohli
  • ParthKohli
\[x = {2 \pm \sqrt{4 - 4(4)(-1)} \over 8}\]
anonymous
  • anonymous
@ParthKohli, without finding roots
RadEn
  • RadEn
yea, right to.. but should use absolut sign because not known α > β or α < β
anonymous
  • anonymous
yeah ok
RadEn
  • RadEn
so, what ur answer ?
anonymous
  • anonymous
1.128
RadEn
  • RadEn
yea, or (sqrt(5))/2 ?

Looking for something else?

Not the answer you are looking for? Search for more explanations.