S
  • S
Use separation of variables to solve differential equation: dy/dt=t/((y+1)^1/2)), y(1)=3 ???
Mathematics
  • Stacey Warren - Expert brainly.com
Hey! We 've verified this expert answer for you, click below to unlock the details :)
SOLVED
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
chestercat
  • chestercat
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
dumbcow
  • dumbcow
use algebra to get "t" terms with dt on one side, and "y" terms with dy on other side you might try cross-multiplying here
S
  • S
thanks, I know that step, right now I am stuck with interval part
anonymous
  • anonymous
interval integral?

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

S
  • S
correct, sorry
dumbcow
  • dumbcow
oh ok, you didn't say so i thought i'd start from beginning :) im guessing the sqrt(y+1) part
anonymous
  • anonymous
if you can't do the 'y' part in your head... use u=y+1 du =dy \[{ \int\limits_{}^{}} \sqrt{u} du =?\]
dumbcow
  • dumbcow
sqrt is 1/2 power ... just use power rule
S
  • S
so I get 1/2(y+1)^-1/2=t^2/2 ?
anonymous
  • anonymous
\[\int\limits_{ }^{ } x ^{n} = \frac{ 1 }{ n+1 } * x ^{n+1}\]
anonymous
  • anonymous
n here = 1/2
S
  • S
i got 2/3(Y+1)^3/2=t^2/2, right?
dumbcow
  • dumbcow
yes ... but don't forget constant "+C" on right side

Looking for something else?

Not the answer you are looking for? Search for more explanations.