swissgirl
  • swissgirl
How to find the complex roots of \(x^4+x^3+3x^2+2x+2 \)
Mathematics
  • Stacey Warren - Expert brainly.com
Hey! We 've verified this expert answer for you, click below to unlock the details :)
SOLVED
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
chestercat
  • chestercat
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
dumbcow
  • dumbcow
you have to factor out any real roots easiest to graph the function to obtain any real roots
swissgirl
  • swissgirl
There are no real roots though
swissgirl
  • swissgirl
its above the y axis

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

experimentX
  • experimentX
let (x^2+bx+1)(x^2+cx+2) = that expression and find the value of b and c
dumbcow
  • dumbcow
ok then yeah what @experimentX said if two of the complex roots is in the form: \[x = a \pm bi\] then \[x-a = \pm bi\] \[(x-a)^{2} = -b^{2}\] \[x^{2}+ (-2a)x +(a^{2}+b^{2}) = 0\] anyway , my point is that a pair of complex roots come from a quadratic equation :|
KingGeorge
  • KingGeorge
I imagine you could factor this by grouping and then use the quadratic formula again.
swissgirl
  • swissgirl
i tried doing the method u taught me yesterday but it wldnt go
KingGeorge
  • KingGeorge
\[\Large x^4+x^3+3x^2+2x+2 \\ \Large =x^4+2x^2+x^3+x^2+2(x+1)\\ \Large =x^4+2x^2+x^2(x+1)+2(x+1)\\ \Large =x^2(x^2+2)+(x^2+2)(x+1)\\ \Large =(x^2+2)(x^2+x+1)\]
KingGeorge
  • KingGeorge
I think the trick is seeing to split up the \(3x^2\) as \(2x^2+x^2\).
swissgirl
  • swissgirl
omg y is it always sooooo simple and I can never see it lol
swissgirl
  • swissgirl
Thanksssss guyssss for helping me :))))
KingGeorge
  • KingGeorge
You're welcome.

Looking for something else?

Not the answer you are looking for? Search for more explanations.