anonymous
  • anonymous
Prove that the vectors u = 3i + j - 2k , v = -i + 3j+ 4k and w = 4i - 2j - 6k can form the sides of a triangle
Physics
jamiebookeater
  • jamiebookeater
See more answers at brainly.com
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get this expert

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this
and thousands of other questions

anonymous
  • anonymous
You learn linear algebra?
anonymous
  • anonymous
Prove: 1) Try w+v, its equal u. Isn't that suspicious? This proves that these three vectors are side of a triangle. But wait! we don't know if they are in the same plane yet :) 2) To prove all of them are in the same plane, find determinant of the 3x3 matrix. If it is zero, then you got your answer.
anonymous
  • anonymous
@imron07 the determinant of the 3 by 3 matrix is also zero...how does that make them to be in the same plane?

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

anonymous
  • anonymous
This means one of the the three vectors aren't independent (or span new dimension) from the other two. In other word, you can make one of them by combyning the other two. Say: a*v+b*w=u You can find that a=b=1. Well, the second step isn't really neccesary actually (because by guessing, you already know that v+w=u).

Looking for something else?

Not the answer you are looking for? Search for more explanations.