zzr0ck3r
  • zzr0ck3r
how do I get from here 2x^3-3x+1 to (x-1)(2x^2+2x-1)
Mathematics
  • Stacey Warren - Expert brainly.com
Hey! We 've verified this expert answer for you, click below to unlock the details :)
SOLVED
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
schrodinger
  • schrodinger
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
Mimi_x3
  • Mimi_x3
maybe long division
Mimi_x3
  • Mimi_x3
long division works!
Mimi_x3
  • Mimi_x3
|dw:1347405240429:dw| hopefully you can understand that..

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

zzr0ck3r
  • zzr0ck3r
note at all, I want get from the first one to the second one, say I was given to2x^3-3x+1, how do I get to (x-1)(2x^2+2x-1). I dont see how what you did applies
Mimi_x3
  • Mimi_x3
wait a mistake
asnaseer
  • asnaseer
there is an alternative way:\[\begin{align} 2x^3-3x+1&=x(2x^2-3)+1\\ &=x(2x^2-3)-(2x^2-3)+(2x^2-3)+1\\ &=(x-1)(2x^2-3)+2x^2-3+1\\ &=(x-1)(2x^2-3)+2x^2-2\\ &=(x-1)(2x^2-3)+2(x^2-1)\\ &=(x-1)(2x^2-3)+2(x-1)(x+1)\\ &=(x-1)(2x^2-3+2(x+1))\\ &=(x-1)(2x^2-3+2x+2)\\ &=(x-1)(2x^2+2x-1) \end{align}\]
zzr0ck3r
  • zzr0ck3r
this is all to see where 2x^3-3x+1>0
zzr0ck3r
  • zzr0ck3r
great ty
asnaseer
  • asnaseer
yw :)
zzr0ck3r
  • zzr0ck3r
ty also @Mimi_x3

Looking for something else?

Not the answer you are looking for? Search for more explanations.