PhoenixFire
  • PhoenixFire
How do you calculate the momentum of two objects immediately after a perfectly elastic collision? Do you need to find the velocities of the two objects after collision and then use the formula of p=mv. where p is momentum vector, m is mass of the object, and v is the velocity vector? Or is there another way to find the linear momentum?
Physics
  • Stacey Warren - Expert brainly.com
Hey! We 've verified this expert answer for you, click below to unlock the details :)
SOLVED
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
jamiebookeater
  • jamiebookeater
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
Shane_B
  • Shane_B
It would be easier to explain with an actual problem but for the most part, you just have to remember that momentum and KE are conserved in a perfectly elastic collision. This should help: http://hyperphysics.phy-astr.gsu.edu/hbase/colsta.html and http://hyperphysics.phy-astr.gsu.edu/hbase/elacol.html#c4
PhoenixFire
  • PhoenixFire
I have a problem. object 1: m=10kg v=(6, 1) p=mv=(60, 10) object 2: m=100kg v=(-6, -2) p=mv=(-600, -200) They collide, what's the momentum of each object immediately after collision.
PhoenixFire
  • PhoenixFire
So what I got from those two links was basically that I do need to calculate the final velocities. \[v_{1f}={(m_1 - m_2)v_{1i} + 2m_2 v_{2i} \over m_1+m_2}\]\[v_{2f}={(m_2-m_1)v_{2i}+2m_1v_{1i} \over m_1+m_2}\] Then apply the momentum formula\[\mathbf {\vec p}=m {\mathbf{\vec v}}\] Kinda strange since the next question asks me to find the velocities.. You'd think they would put it in the right order to help you learn the method.

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

Shane_B
  • Shane_B
The problem you posted it's a 2-dimensional collision and momentum is still conserved but you have to account for the momentum in 2 dimensions. That's a bit tougher and I admit that I haven't done one of those in a while :)

Looking for something else?

Not the answer you are looking for? Search for more explanations.