At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga.
Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus.
Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get our expert's

answer on brainly

SEE EXPERT ANSWER

Get your **free** account and access **expert** answers to this and **thousands** of other questions.

I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!

Join Brainly to access

this expert answer

SEE EXPERT ANSWER

To see the **expert** answer you'll need to create a **free** account at **Brainly**

is that all? I thought there were more

and there is one more...orthocenter---intersection of altitudes

OK. do you know how to prove these are are collinear? (e.g. using coordinate geom)

yes...you can prove

can you help? Please :D

|dw:1347448272061:dw|

prove centroid, orthocenter and circumcenter are collinear

i have taken the coordinate of A=(1,0) for simplicity

Yep

now find the centroid...

u know to find the centroid if coordinate of vertices of a triangle are given...

not really

http://mathforum.org/library/drmath/view/57665.html

http://www.vitutor.com/geometry/plane/orthocenter.html

Don't worry found it in my text book. Thanks anyway

http://www.askiitians.com/iit_jee-Straight_Line/Centroid_Incentre_and_Circum_Centre

open this one...you'll get...how to calculate centroid, inceter...