anonymous
  • anonymous
a(t) = A + Bt x(0) =xi v(0) = vi derive the position as a function of time equation
Mathematics
  • Stacey Warren - Expert brainly.com
Hey! We 've verified this expert answer for you, click below to unlock the details :)
SOLVED
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
katieb
  • katieb
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
zzr0ck3r
  • zzr0ck3r
take the first integral v(t) = At+(1/2)Bt^2 + C then plug in v(0) to solve for C
3psilon
  • 3psilon
Then take the next integral and plug X(0)
zzr0ck3r
  • zzr0ck3r
yerp

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

anonymous
  • anonymous
i take the integral of the first integral? and then plug in x(0)?
zzr0ck3r
  • zzr0ck3r
yep
zzr0ck3r
  • zzr0ck3r
note you need to solve for c first
anonymous
  • anonymous
how did you get (1/2)bt^2 ?
3psilon
  • 3psilon
anti derivative
zzr0ck3r
  • zzr0ck3r
the integral of Bt
zzr0ck3r
  • zzr0ck3r
A*0+(1/2)B*0^2 + C = vo c = v0
anonymous
  • anonymous
ohhhhhh. okay okay. i get it now @zzr0ck3r
zzr0ck3r
  • zzr0ck3r
great... note: Newton was a p i m p
3psilon
  • 3psilon
\[V(0) = V_{i} \] according to the boundary condition So \[V(0) =\frac{ B0^{2} }{ 2 } + a(0) + C\] \[ V(0) = C\] \[ V(0) = vi\] So \[ Vi = C\] Plug \[ V(i)\] into the orginal \[V(t)\] function as C

Looking for something else?

Not the answer you are looking for? Search for more explanations.