Got Homework?

Connect with other students for help. It's a free community.

  • across
    MIT Grad Student
    Online now
  • laura*
    Helped 1,000 students
    Online now
  • Hero
    College Math Guru
    Online now

Here's the question you clicked on:

55 members online
  • 0 replying
  • 0 viewing


1) Prove that if the sets S-T and T-S are equivalent, then S and T are equivalent. 2) Prove that \[ sup\{r \in Q : r< \sqrt{5} \}=\sqrt{5} \]

  • one year ago
  • one year ago

  • This Question is Closed
  1. satellite73
    Best Response
    You've already chosen the best response.
    Medals 0

    i am not sure what the first one means, but the idea for the second one is this: suppose by way of contradiction that the supremum is less than \(\sqrt{5}\) say it is \(\sqrt{5}-\epsilon\) then since we know that between any two reals there is a rational, there exist some rational \(r\) with between \(\sqrt{5}-\epsilon<r<\sqrt{5}\) contradicting the assumption that \(\sqrt{5}-\epsilon\) is the supremum)

    • one year ago
  2. cinar
    Best Response
    You've already chosen the best response.
    Medals 0

    thank you satellite, this helped me a lot..

    • one year ago
    • Attachments:

See more questions >>>

Your question is ready. Sign up for free to start getting answers.

spraguer (Moderator)
5 → View Detailed Profile

is replying to Can someone tell me what button the professor is hitting...


  • Teamwork 19 Teammate
  • Problem Solving 19 Hero
  • You have blocked this person.
  • ✔ You're a fan Checking fan status...

Thanks for being so helpful in mathematics. If you are getting quality help, make sure you spread the word about OpenStudy.

This is the testimonial you wrote.
You haven't written a testimonial for Owlfred.