• anonymous
Change from rectangular to cylindrical coordinates. Select such set of cylindrical coordinates as θ [0, 2π). (3(3^(1/2)), 3, -5) I've got r = 6 and z = -5. How do I find theta? I keep getting it to be some variation of 30 degrees. :/
MIT 18.02 Multivariable Calculus, Fall 2007
  • Stacey Warren - Expert
Hey! We 've verified this expert answer for you, click below to unlock the details :)
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
  • katieb
I got my questions answered at in under 10 minutes. Go to now for free help!
  • anonymous
First, good job finding r = sqrt(27 + 9) and z = -5. To find theta simply, try drawing a picture of the x-y (or r-theta) plane. This should look like a familiar triangle: a right triangle made by half an equilateral, which confirms your "variation of 30 degrees" (though you'll want to put that into radians). To confirm this conversion, use the following equations: \[x = rsin\theta, y = rcos\theta \implies tan\theta = \frac{rsin\theta}{rcos\theta} \implies \theta = arctan\left(\frac{x}{y}\right) \] Keep in mind that tan(theta) = tan(theta + pi), so check theta against x and y for reasonableness.

Looking for something else?

Not the answer you are looking for? Search for more explanations.