Open study

is now brainly

With Brainly you can:

  • Get homework help from millions of students and moderators
  • Learn how to solve problems with step-by-step explanations
  • Share your knowledge and earn points by helping other students
  • Learn anywhere, anytime with the Brainly app!

A community for students.

What is the next term in the sequence below? 1/2, 2/6, 3/18, 4/54, ____

Mathematics
See more answers at brainly.com
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Join Brainly to access

this expert answer

SIGN UP FOR FREE
\[\frac{ 1 }{ 2 }, \frac{ 2 }{ 6 },\frac{ 3 }{ 18 },\frac{ 4 }{ 54 },\frac{ ? }{ ? }\]
1/2 + 1/3 + 1/6 + 1/9??
We note: \[ \frac{a_n}{b_n}=\frac{a_{n-1}+1}{3b_{n-1}} \]So: \[ \frac{5}{162} \]Is our next term.

Not the answer you are looking for?

Search for more explanations.

Ask your own question

Other answers:

Arithmetic Progression : try to check whether there is common difference or not ... \[\large{\frac{2}{6}-\frac{1}{2} = \frac{2-3}{6}=\frac{-1}{6}=d}\] \[\large{\frac{3}{18}-\frac{2}{6}=\frac{3-6}{18}=\frac{-3}{18}=\frac{-1}{6}=d}\] hence the above sequence is of arithmetic progression
\[\large{\frac{4}{54}+\frac{-1}{6}= \frac{4-9}{54}=\frac{-5}{54}}\]
It's not an arithmetic series @mathslover , since: \[ \lim_{n\to\infty}\left(\frac{a_n}{b_n}\right)=0 \]
but it do have common difference...
For the first three terms, check: \[ \frac{4}{54}-\frac{3}{18}\ne -\frac{1}{6} \]

Not the answer you are looking for?

Search for more explanations.

Ask your own question