anonymous
  • anonymous
You have a 1.0 μF, 2.0 μF and 3.0 μF capacitors. What capacitances can you get by connecting them?
Physics
jamiebookeater
  • jamiebookeater
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get this expert

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this
and thousands of other questions

anonymous
  • anonymous
\[(1.0 + 2.0 + 3.0) \mu{\rm F}\] \[\left(\frac{1.0 + 2.0}{2} + 3.0\right)\mu{\rm F}\] \[\left(\frac{1.0 + 3.0}{2} + 2.0\right)\mu{\rm F}\] \[\left(\frac{2.0 + 3.0}{2} + 1.0\right)\mu{\rm F}\] \[\left(\frac{1.0 + 2.0 + 3.0}{3} \right)\mu{\rm F}\]
NoelGreco
  • NoelGreco
Not quite Carl. The first one is correct for all three caps in parallel. The correct formula for capacitors in series is:\[\frac{ 1 }{ C _{Eq} }= \frac{ 1 }{ C _{1} }+\frac{ 1 }{ C _{2} }+\frac{ 1 }{ C _{3} }...\] which reduces to: \[C _{Eq}=\frac{ C _{1}C _{2} }{C _{1}+C _{2} }\] for two capacitors in series.
anonymous
  • anonymous
RIght you are. For some reason I had a braino and thought we were dealing with resisters. Substitute the inverses for the numbers in all the equations, and invert at the end.

Looking for something else?

Not the answer you are looking for? Search for more explanations.