anonymous
  • anonymous
Find the distance between the points (-1, 3) and (5, 0).
Mathematics
  • Stacey Warren - Expert brainly.com
Hey! We 've verified this expert answer for you, click below to unlock the details :)
SOLVED
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
schrodinger
  • schrodinger
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
anonymous
  • anonymous
\[d = \sqrt{(-1-5)^2 + (3-0)^2}\]
anonymous
  • anonymous
wi|dw:1347663020094:dw|
anonymous
  • anonymous
\[\sqrt{45}?\]

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

anonymous
  • anonymous
\[\sqrt{(y2-y1)^2+(x2-x1)}\] This is the formula we use to find the distance between points. So if we pluck (-1,3) & (5,0) in this formula we have \[\sqrt{(-1-5)^2+(3-0)^2}\] Then we do what are in bose parenthesis and get- \[\sqrt{(-6)^2+(3)^2}\] Once we put the exponents & add it together we now have- \[\sqrt{45}\]
anonymous
  • anonymous
There's not a choice in that
anonymous
  • anonymous
if you round it you get 7 if that helps
anonymous
  • anonymous
|dw:1347663433928:dw| Those are the choices
anonymous
  • anonymous
\[3\sqrt{5}\]
anonymous
  • anonymous
|dw:1347663557537:dw| If we have to simplify \[\sqrt{45}\] we list all the factors of 45. 45=5*3*3. When there's two of a number we can cancel that out and put it on the other side of the square root. That means we then get \[3\sqrt{5}\]

Looking for something else?

Not the answer you are looking for? Search for more explanations.