anonymous
  • anonymous
I need some help..
Mathematics
jamiebookeater
  • jamiebookeater
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get this expert

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this
and thousands of other questions

anonymous
  • anonymous
1 Attachment
anonymous
  • anonymous
any idea?
AriPotta
  • AriPotta
1 Attachment

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

helder_edwin
  • helder_edwin
let's first deal with one-to-one: let \(S_1,S_2\in D\) such that \[ \large f(S_1)=f(S_2) \] we have to prove that \(S_1=S_2\). we have four cases: \(\mathbf{(1)}\) \(1\in S_1\qquad 1\in S_2\) then \[ \large f(S_1)=f(S_2) \] \[ \large S_1\setminus\{1\}=S_2\setminus\{1\} \] \[ \large S_1=S_2 \] \(\mathbf{(2)}\) \(1\notin S_1\qquad 1\notin S_2\) then \[ \large f(S_1)=f(S_2) \] \[ \large S_1\cup\{1\}=S_2\cup\{1\} \] \[ \large S_1=S_2 \]
anonymous
  • anonymous
Do we need to prove if \[ S_1 \not=S_2\quad then \quad f(S_1)\not=f(S_2)\] for one to one
anonymous
  • anonymous
actually we can use both of them..
anonymous
  • anonymous
these are definition.. \[ \forall a,b \in A, \;\; f(a)=f(b) \Rightarrow a=b \\ \forall a,b \in A, \;\; a \neq b \Rightarrow f(a) \neq f(b) \]
anonymous
  • anonymous
this is definition for onto \[ \forall y \in Y, \, \exists x \in X, \;\; f(x)=y \]
helder_edwin
  • helder_edwin
thanks. but i know the definitions.
helder_edwin
  • helder_edwin
onto is easier: let \(K\in E\) if \(1\notin K\) then \[ \large K=f(K\cup\{1\}) \] if \(1\in K\) then \[ \large K=f(K\setminus\{1\}) \]
anonymous
  • anonymous
thanks a lot..
anonymous
  • anonymous
what are the other two cases..

Looking for something else?

Not the answer you are looking for? Search for more explanations.