anonymous
  • anonymous
prove that set of all integers is not a vector space
MIT 18.06 Linear Algebra, Spring 2010
chestercat
  • chestercat
See more answers at brainly.com
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get this expert

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this
and thousands of other questions

anonymous
  • anonymous
You need to specify what set the scalars are in...If the scalar set is \(\mathbb{R}\), then scalar multiplication isn't closed.
anonymous
  • anonymous
Just have to show an integer multiplied by a scalar is not an integer any more. For example, 4 multiplied by 1.2 is 4.8, which is not an integer any more. Therefore, the set of all integers is not a vetor space.

Looking for something else?

Not the answer you are looking for? Search for more explanations.