Construct a sequence of interpolating values \(Y_n, to,f(1 + \sqrt{10})\), where \(f(x) = (1 + X^2)^{-1}\) for \(-5 \leq X \leq 5\), as follows: For each n = 1,2, ... ,10, let h = 10/n and \(Y_n = P_n(1 + \sqrt{10})\), where Pn(x) is the interpolating polynomial for f(x) at the nodes \(x_0^n, x_1^n,…,x_n^n\) and \(x_j^n= -5 + jh\), for each j = 0, 1,2, ... ,n. Does the sequence {Y_n} appear to converge to \(f(1 + \sqrt{10})\) How would i set up this sequence?

Hey! We 've verified this expert answer for you, click below to unlock the details :)

I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!

Every x has the formula of -5+jh

I am just not sure what i wld plug in for my j and h

Like i just need to figure out what my x's wld be but with these h's and j's I am getting confused

Looking for something else?

Not the answer you are looking for? Search for more explanations.

## More answers

Looking for something else?

Not the answer you are looking for? Search for more explanations.