anonymous
  • anonymous
find f'(x) if f(x) = ln(sinx)
Mathematics
  • Stacey Warren - Expert brainly.com
Hey! We 've verified this expert answer for you, click below to unlock the details :)
SOLVED
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
schrodinger
  • schrodinger
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
anonymous
  • anonymous
derivative of sinx divided by sinx
anonymous
  • anonymous
\[\frac{d}{dx}[\ln(f(x))]=\frac{f'(x)}{f(x)}\] via the chain rule
anonymous
  • anonymous
oops

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

anonymous
  • anonymous
cotx
anonymous
  • anonymous
f(x) = ln(sinx) y' = (1/sinx)(cosx) y' = cosx/sinx y' = cotx
anonymous
  • anonymous
f'(x)=d(lnsinx)/dx = {d(ln sinx) /dsinx} * {dsinx /dx} ={1/sinx} *{cosx} =cosx/sinx =cotx
anonymous
  • anonymous
got it?
lgbasallote
  • lgbasallote
oops? @satellite73
anonymous
  • anonymous
why cot x and not tan x
anonymous
  • anonymous
there was an erroneous tangent floating around, it is gone
anonymous
  • anonymous
oh look, it came back!!
anonymous
  • anonymous
U can write it interms of tan x too
anonymous
  • anonymous
BUT: f'(x)= 1/tan x
anonymous
  • anonymous
thanks

Looking for something else?

Not the answer you are looking for? Search for more explanations.