anonymous
  • anonymous
The number (1.333and so on) belongs to which set of numbers? -rrational numbers -rational numbers, integers, and whole numbers -rational numbers and integers but not whole numbers -rational numbers but not integers or whole numbers
Mathematics
  • Stacey Warren - Expert brainly.com
Hey! We 've verified this expert answer for you, click below to unlock the details :)
SOLVED
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
jamiebookeater
  • jamiebookeater
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
anonymous
  • anonymous
First some definitions integer: any whole number e.g. -1,0,1 rational: can be expressed as a fraction with integral numerator and denominator. e.g. 1.25
anonymous
  • anonymous
all repeating numbers are rational
anonymous
  • anonymous
ok o.O

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

anonymous
  • anonymous
so its rational?
anonymous
  • anonymous
yes. do you know how to turn a repeating into a fraction to show it is rational?
anonymous
  • anonymous
no
anonymous
  • anonymous
Ok, in this case 1.33333... let n = 1.33333... 10n = 13.33333... 10n-n = 12 9n = 12 n = 12/9
anonymous
  • anonymous
wait so the answer is d right?
anonymous
  • anonymous
yes
anonymous
  • anonymous
cool thx for explaining
anonymous
  • anonymous
sure, anytime
anonymous
  • anonymous
Oh and by the way, welcome to OpenStudy

Looking for something else?

Not the answer you are looking for? Search for more explanations.