hartnn
  • hartnn
Anyone getting bored? try this : If a³ + b³ = 0 , then the value of log (a + b) – 0.5(log a + log b + log 3) is equal to ??
Mathematics
  • Stacey Warren - Expert brainly.com
Hey! We 've verified this expert answer for you, click below to unlock the details :)
SOLVED
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
jamiebookeater
  • jamiebookeater
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
hartnn
  • hartnn
just for safety: a\(\ne\)b a\(\ne\)-b
ParthKohli
  • ParthKohli
\[a^3 + b^3 = (a + b)(a^2 - ab + b^2)\]So,\[(a + b)(a^2 - ab + b^2) = 0\]Dividing both sides by a + b,\[a^2 - ab + b^ 2 = 0\]Since \(a^2 - 2ab + b^2 = (a - b)^2\), we have,\[a^2 - 2ab + b^2 +ab = 0\]\[(a - b)^2 + ab = 0\]\[(a - b)^2 = - ab\]\[a^2 + b^2 = ab\]One such case is a = 0 and b = 0, but you haven't allowed that. :(
hartnn
  • hartnn
hmm....nice try no other formula for a^3+b^3 ?

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

nipunmalhotra93
  • nipunmalhotra93
Are you sure that your question is correct? If a^3 + b^3=0, then either a=-b or a=b=0.... :\ (because x^3 if a one one function)
hartnn
  • hartnn
yes, question is correct.
nipunmalhotra93
  • nipunmalhotra93
0
hartnn
  • hartnn
how ?
nipunmalhotra93
  • nipunmalhotra93
continuing from parthkohli, |dw:1347876944383:dw|
nipunmalhotra93
  • nipunmalhotra93
and your question simplifies to |dw:1347876996875:dw|
anonymous
  • anonymous
neat solution
hartnn
  • hartnn
yes, thats right, its 0.there is easier way. rather than continuing...
nipunmalhotra93
  • nipunmalhotra93
@mukushla thanks :) @hartnn what is it?
hartnn
  • hartnn
\((a^3+b^3)=(a+b)^3-3ab(a+b)=0\) and the rest is ............
nipunmalhotra93
  • nipunmalhotra93
haha... yeah :D
nipunmalhotra93
  • nipunmalhotra93
well even though we solved it, it IS technically wrong I think? :\
nipunmalhotra93
  • nipunmalhotra93
|dw:1347877692079:dw|
nipunmalhotra93
  • nipunmalhotra93
|dw:1347877816341:dw|
hartnn
  • hartnn
if i read it correctly, there exist no a,b not equal to 0, such that a^2+b^2-ab = 0.....??
nipunmalhotra93
  • nipunmalhotra93
Yea...to be clearer, I mean that a^2+b^2-ab=0 iff a=b=0
hartnn
  • hartnn
u sure about a^2+b^2-ab=0 iff a=b=0 ?
nipunmalhotra93
  • nipunmalhotra93
yea... you can try that... you won't find any a, b s.t a,b are not both zero and the condition is satisfied....
nipunmalhotra93
  • nipunmalhotra93
algebraically, x^3, is a one one function... so, a^3 +b^3=0 implies a^3=(-b)^3 which implies a=-b
hartnn
  • hartnn
a^3 =-b^3 have 3 roots.....i think
nipunmalhotra93
  • nipunmalhotra93
Graphically,
1 Attachment
nipunmalhotra93
  • nipunmalhotra93
I plotted two graphs.... z=xy and z=x^2+y^2 they intersect only at (0,0) Yes there are three values of b for every a. But they are complex.
nipunmalhotra93
  • nipunmalhotra93
If your question covers complex numbers, then it's fine.... but for real, this is it :)
nipunmalhotra93
  • nipunmalhotra93
@hartnn Thanks for the time man.. that was a good exercise for me ^_^
hartnn
  • hartnn
hmm..log of complex numbers....didn't think of it b4 posting....and thanks to u for wonderful explanation.
nipunmalhotra93
  • nipunmalhotra93
you're most welcome buddy!

Looking for something else?

Not the answer you are looking for? Search for more explanations.