Solve the system of equations using matrices. Use Gauss-Jordan elimination 3x-7y-7z = 7 6x+4y-3z=67 -6x-3y+z=-62

At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get our expert's

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this and thousands of other questions.

A community for students.

Solve the system of equations using matrices. Use Gauss-Jordan elimination 3x-7y-7z = 7 6x+4y-3z=67 -6x-3y+z=-62

Mathematics
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get this expert

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this and thousands of other questions

Hint:\[\begin{bmatrix} 3 & -7 & -7\\ 6 & 4 & -3\\ -6 & -3 & 1 \end{bmatrix}\begin{bmatrix} x\\ y\\ z \end{bmatrix}=\begin{bmatrix} 7\\ 67\\ -62 \end{bmatrix}.\]
so does x = 7
hmm

Not the answer you are looking for?

Search for more explanations.

Ask your own question

Other answers:

did you use Michael Jordan Elimination method to arrive at x=7?
the book I am using is really confusing it says I have to get 1 on top but I don't know how
http://ceee.rice.edu/Books/CS/chapter2/linear44.html
I see how to do it when the number is 0 or 1 but I don't know how to start with the 3
@across almost gave you the cramers rule use it to find values of x, y, and z
http://www.karlscalculus.org/cgi-bin/linear.pl
okay I used that but my answers I think are what is confusing me these are my choices a. {(7,1,7)} b. {14,7,-7)} c. {(-7,7,14)} d. {(7,7,1)}
If you have choices, all you have to do is substitute, I mean, slam-dunk them and check!
I did that and none of them equal up
that is the way they are
I'm interested in knowing that this Michael Jordan method is

Not the answer you are looking for?

Search for more explanations.

Ask your own question