At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga.
Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus.
Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get our expert's

answer on brainly

SEE EXPERT ANSWER

Get your **free** account and access **expert** answers to this and **thousands** of other questions.

See more answers at brainly.com

|dw:1347943151983:dw|

domain of sine is all real numbers

range of sine is \([-1,1]\) so range of -3 sine is \([-3,3]\)
no algebra needed for that one

oh i didn't see the \(+1\) out at the end. adjust by adding one to get range of \([-2,4]\)

How do I find the domain of the sine equation?

domain of \(2x^4-5\) is all reals, so no worries here

Okay... What about the second one? I know that the denominator cant equal 0, but what about range??

for range find the range of
\[\frac{x-2}{x+1}\] and then exclude what you would get if \(x=1\)

since in the original function you know \(x\neq 1\)

I'm having difficulty finding the range..

or switch \(x\) and \(y\) and solve for \(y\), either way will do it
can you do that algebra?

I think I got it now, @satellite73! Thanks so much! I have a Functions Test tomorrow!

good luck!