Open study

is now brainly

With Brainly you can:

  • Get homework help from millions of students and moderators
  • Learn how to solve problems with step-by-step explanations
  • Share your knowledge and earn points by helping other students
  • Learn anywhere, anytime with the Brainly app!

A community for students.

Differential equation question; if dp/dt = P-kP where P is population of rabbits. In a certain year the population is too high and they decide to shoot "S" rabbits each year. Therefore dp/dt = P-kP - S. Find in terms P and k the maximum amount of rabbits that can be shot each year to make the population stable.

Mathematics
See more answers at brainly.com
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Join Brainly to access

this expert answer

SIGN UP FOR FREE
\[dp/p=(1-k)dt\] ----> \[\ln p=(1-k)t + c\] equation of population before shooting after shooting ln p=(1-k-s)t + k ...differentiate it, get expression of s and equate it to zero to get the answer
So do i equate dp/dt to 0?
\[1/p=1-k-s\]

Not the answer you are looking for?

Search for more explanations.

Ask your own question

Other answers:

sorry for previous reply...dont do dp/dt but get expression of s and do ds/dt
OK thanks

Not the answer you are looking for?

Search for more explanations.

Ask your own question