anonymous
  • anonymous
Differential equation question; if dp/dt = P-kP where P is population of rabbits. In a certain year the population is too high and they decide to shoot "S" rabbits each year. Therefore dp/dt = P-kP - S. Find in terms P and k the maximum amount of rabbits that can be shot each year to make the population stable.
Mathematics
  • Stacey Warren - Expert brainly.com
Hey! We 've verified this expert answer for you, click below to unlock the details :)
SOLVED
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
chestercat
  • chestercat
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
anonymous
  • anonymous
\[dp/p=(1-k)dt\] ----> \[\ln p=(1-k)t + c\] equation of population before shooting after shooting ln p=(1-k-s)t + k ...differentiate it, get expression of s and equate it to zero to get the answer
anonymous
  • anonymous
So do i equate dp/dt to 0?
anonymous
  • anonymous
\[1/p=1-k-s\]

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

anonymous
  • anonymous
sorry for previous reply...dont do dp/dt but get expression of s and do ds/dt
anonymous
  • anonymous
OK thanks

Looking for something else?

Not the answer you are looking for? Search for more explanations.