For what values of k is f(x) continuous? 3x^2-11x-4 x<=4 kx^2-2x-1 x>4

At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get our expert's

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this and thousands of other questions.

A community for students.

For what values of k is f(x) continuous? 3x^2-11x-4 x<=4 kx^2-2x-1 x>4

Mathematics
See more answers at brainly.com
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get this expert

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this and thousands of other questions

when x = 4, f(x) must be 0
k*4^2-2*4-1=0
there's an alternative method...

Not the answer you are looking for?

Search for more explanations.

Ask your own question

Other answers:

which is kinda what i did, but i skipped steps
3x^2-11x-4, when x<=4.. plug in 4 into that equation: 3*4^2-11*4-4=3*16-44-4=48-44-4=0
Thus the second equation must also be 0 when x=4
|dw:1348118755000:dw| lol btw that's not what the functions look like, but you have to make them touch each other
So kx^2-2x-1=0 when x=4
You want\[\lim_{x\to4}\left(kx^2-2x-1\right)=0.\]
16k-8-1=0 k=9/16
so the answer k= 9/16, that's it?
@bahrom7893 is right. That's the only value of \(k\) for which the piece-wise defined function is continuous.
ok, what's the process? plugging in the 4?
then solving for k?
it's looking at where the function "breaks"... in this case it's at 4
Plug that part into the known piece of the function.. so you know that y is some number, in our case 0
So in order for our function not to break, the second piece must start where the first piece left off, or at 0
when x = 4
they will always give you what you have to plug in?
I'll ask an interesting question: is the function differentiable at that point? ;)
we haven't learned what that means...

Not the answer you are looking for?

Search for more explanations.

Ask your own question