anonymous
  • anonymous
Radical problem: square root of 50 minus square root of 32 + square root of 18= ??
Mathematics
  • Stacey Warren - Expert brainly.com
Hey! We 've verified this expert answer for you, click below to unlock the details :)
SOLVED
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
katieb
  • katieb
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
anonymous
  • anonymous
\[\sqrt{50}-\sqrt{32}+\sqrt{18} = \sqrt{25*2}-\sqrt{16*2}+\sqrt{9*2}= \sqrt{2}(5-4+3)=4\sqrt{2}\] will be the answer i hope...
anonymous
  • anonymous
how did you get this @sriramkumar ? √(5−4+3)
anonymous
  • anonymous
take sqrt(2) common frrom all the terms you see... @alfers101

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

amorfide
  • amorfide
each of those square roots can be simplified. to simplify a surd you look for the highest square number that can possibly go into that number so for root 50 what is the highest square number to go into 50? 25 you multiply it by 2 this allows you to re write root 50 into root 25 x root 2 |dw:1348153723610:dw| root 25 is 5 so you have 5xroot2 which is 5root2 |dw:1348153782679:dw| follow the same process with your other square roots then you just subtract the coefficient of each square root and have the same root (root 2)
anonymous
  • anonymous
thank you :D

Looking for something else?

Not the answer you are looking for? Search for more explanations.