PLEASE ANSWER: f(x)= -h(x)- ((x)/(h(x))) h(-2) = -1 h ' (-2) = -1 find f ' (-2).

At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get our expert's

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this and thousands of other questions.

A community for students.

PLEASE ANSWER: f(x)= -h(x)- ((x)/(h(x))) h(-2) = -1 h ' (-2) = -1 find f ' (-2).

Mathematics
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get this expert

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this and thousands of other questions

Hi! So do you know how to find f' first?
You need to differentiate both sides of: \[f(x)=-h(x)-\frac{x}{h(x)}\]
\[(f(x))'=f'(x)\] \[(-h(x)-\frac{x}{h(x)})'=(-h(x))'-(\frac{x}{h(x)})'=-(h(x))'-(\frac{x}{h(x)})'\] I used the constant multiple rule to bring out -1 and just look at differentiating h(x) Now I will leave the quotient rule to you: Your job is to find: \[(\frac{x}{h(x)})'\]

Not the answer you are looking for?

Search for more explanations.

Ask your own question

Other answers:

Let me know what you get. Just post here.
Did you understand what freckles is asking?
yes
i got the answer thanks!
Great! :)

Not the answer you are looking for?

Search for more explanations.

Ask your own question