anonymous
  • anonymous
PLEASE ANSWER: f(x)= -h(x)- ((x)/(h(x))) h(-2) = -1 h ' (-2) = -1 find f ' (-2).
Mathematics
  • Stacey Warren - Expert brainly.com
Hey! We 've verified this expert answer for you, click below to unlock the details :)
SOLVED
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
schrodinger
  • schrodinger
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
freckles
  • freckles
Hi! So do you know how to find f' first?
freckles
  • freckles
You need to differentiate both sides of: \[f(x)=-h(x)-\frac{x}{h(x)}\]
freckles
  • freckles
\[(f(x))'=f'(x)\] \[(-h(x)-\frac{x}{h(x)})'=(-h(x))'-(\frac{x}{h(x)})'=-(h(x))'-(\frac{x}{h(x)})'\] I used the constant multiple rule to bring out -1 and just look at differentiating h(x) Now I will leave the quotient rule to you: Your job is to find: \[(\frac{x}{h(x)})'\]

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

freckles
  • freckles
Let me know what you get. Just post here.
myininaya
  • myininaya
Did you understand what freckles is asking?
anonymous
  • anonymous
yes
anonymous
  • anonymous
i got the answer thanks!
myininaya
  • myininaya
Great! :)

Looking for something else?

Not the answer you are looking for? Search for more explanations.