Quantcast

A community for students. Sign up today!

Here's the question you clicked on:

55 members online
  • 0 replying
  • 0 viewing

jje089

  • 2 years ago

Solve the differential equation dT(t)/dt= 0.85(75+35sin(t)-T)

  • This Question is Closed
  1. Mr.Math
    • 2 years ago
    Best Response
    You've already chosen the best response.
    Medals 2

    This is a first order DE, and can be rewritten as: \[T'+0.85T=29.75\sin t+63.75\] In order to make this ODE separable, we multiply by the integrating factor [ http://en.wikipedia.org/wiki/Integrating_factor ] The integrating factor here is \(\large e^{\int0.85dt}=e^{0.85t}\). Multiply both sides by the integration factors, you get: \[e^{0.85t}T'+0.85e^{0.85t}T=e^{0.85t}(29.75\sin t+63.75).\] This is equivalent to: \[\frac{d}{dt} (e^{0.85t}T)=e^{0.85t}(29.75\sin t+63.75).\] Integrate both sides and you're done!

  2. jje089
    • 2 years ago
    Best Response
    You've already chosen the best response.
    Medals 0

    Great thanks!!!

  3. Not the answer you are looking for?
    Search for more explanations.

    • Attachments:

Ask your own question

Ask a Question
Find more explanations on OpenStudy

Your question is ready. Sign up for free to start getting answers.

spraguer (Moderator)
5 → View Detailed Profile

is replying to Can someone tell me what button the professor is hitting...

23

  • Teamwork 19 Teammate
  • Problem Solving 19 Hero
  • You have blocked this person.
  • ✔ You're a fan Checking fan status...

Thanks for being so helpful in mathematics. If you are getting quality help, make sure you spread the word about OpenStudy.

This is the testimonial you wrote.
You haven't written a testimonial for Owlfred.