anonymous
  • anonymous
Solve the differential equation dT(t)/dt= 0.85(75+35sin(t)-T)
Mathematics
jamiebookeater
  • jamiebookeater
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get this expert

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this
and thousands of other questions

Mr.Math
  • Mr.Math
This is a first order DE, and can be rewritten as: \[T'+0.85T=29.75\sin t+63.75\] In order to make this ODE separable, we multiply by the integrating factor [ http://en.wikipedia.org/wiki/Integrating_factor ] The integrating factor here is \(\large e^{\int0.85dt}=e^{0.85t}\). Multiply both sides by the integration factors, you get: \[e^{0.85t}T'+0.85e^{0.85t}T=e^{0.85t}(29.75\sin t+63.75).\] This is equivalent to: \[\frac{d}{dt} (e^{0.85t}T)=e^{0.85t}(29.75\sin t+63.75).\] Integrate both sides and you're done!
anonymous
  • anonymous
Great thanks!!!

Looking for something else?

Not the answer you are looking for? Search for more explanations.