anonymous
  • anonymous
Use power series to solve the differential equation \[(x-1)y''+y'=0\] \[y=\sum_{n=0}^\infty a_nx^n\] \[y'=\sum_{n=1}^\infty na_nx^{n-1}\] \[y''=\sum_{n=2}^\infty n(n-1)a_nx^{n-2}\] \[(x-1)\sum_{n=2}^\infty n(n-1)a_nx^{n-2}+\sum_{n=1}^\infty na_nx^{n-1}=0\]
Mathematics
  • Stacey Warren - Expert brainly.com
Hey! We 've verified this expert answer for you, click below to unlock the details :)
SOLVED
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
jamiebookeater
  • jamiebookeater
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
anonymous
  • anonymous
allow me to complete this problem as far as I can, give me like 5 mins. Thanks!
anonymous
  • anonymous
\[\sum_{n=2}^{\infty}n(n-1)a_nx^{n-1}-\sum_{n=2}^\infty n(n-1)a_nx^{n-2}+\sum_{n=1}^\infty na_nx^{n-1}=0\]
anonymous
  • anonymous
\[\sum_{n=1}^{\infty}n(n+1)a_{n+1}x^n-\sum_{n=0}^{\infty}(n+2)(n+1)a_{n+2}x^n+\sum_{n=0}^\infty (n+1)a_{n+1}x^n=0\]

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

anonymous
  • anonymous
ok so when we strip out a term on \[\sum_{n=1}^{\infty}n(n+1)a_{n+1}x^n\] for the sum to start at n=0 would I have... \[a_0+ \sum_{n=0}^\infty n(n+1)a_{n+1}x^n \]
anonymous
  • anonymous
no that would be \[a_0+ \sum_{n=1}^\infty n(n+1)a_{n+1}x^n\]
anonymous
  • anonymous
cof of x^n (left)=cof of x^n (right) don't use sigmas.
anonymous
  • anonymous
already I have showed you ! Take a look to my solution.
anonymous
  • anonymous
y=an y'=(n+1)an+1 xy'=nan y''=(n+2)(n+1)an+2 xy''=(n+1)nan+1 x2y=n(n-1)an and so on.
anonymous
  • anonymous
(n+1)nan+1-(n+2)(n+1)an+2+(n+1)an+1=0 an+2=(n+1)/(n+2) an+1 an+2=a1/(n+2) one answer is just a0(check it out) y=a0+a1sigma(n=1 to inf)(x^n/n)

Looking for something else?

Not the answer you are looking for? Search for more explanations.