anonymous
  • anonymous
tell whether the lines are parallel, perpendicular, or neither. line 1 (-1,9),(-6,-6) line 2 (-7,-23), (0,-2).
Mathematics
  • Stacey Warren - Expert brainly.com
Hey! We 've verified this expert answer for you, click below to unlock the details :)
SOLVED
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
katieb
  • katieb
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
anonymous
  • anonymous
To answer this question, you have to find the slopes. slop of the line 1, m1 = (y1-y2)/(x1-x2)= (9-(-6)) / (-1-(-6)) slop of the line 2, m2 = (y1-y2)/(x1-x2)= (-23-(-2)) / (-7-0) Now you can find m1, m2. If lines are parallel, they have the same slopes. m1=m2 If lines are perpendicular, they have slopes that are negative reciprocals of each other. m1=-1/m2 If the slopes are equal or negative reciprocals they are neither parallel nor perpendicular.
anonymous
  • anonymous
can u graph it as well??
anonymous
  • anonymous
@sonja_lee2 Actually there's no need of graphing the two lines. because you can determine whether the lines are parallel or perpendicular using the slopes. Here, slop of the line 1, m1 = (y1-y2)/(x1-x2)= (9-(-6)) / (-1-(-6)) = 3 slop of the line 2, m2 = (y1-y2)/(x1-x2)= (-23-(-2)) / (-7-0) = 3 m1= m2 That means the two lines are parallel |dw:1348453951842:dw|

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

anonymous
  • anonymous
ohh okay i see

Looking for something else?

Not the answer you are looking for? Search for more explanations.