At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga.
Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus.
Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get our expert's

answer on brainly

SEE EXPERT ANSWER

Get your **free** account and access **expert** answers to this and **thousands** of other questions.

See more answers at brainly.com

ik the thirum, i just havn't done it in about 3 years.

Ok. Let a = x and b = x+7
therefore,
(x)^2 + (x+7)^2 = (8+x)^2

okay, then what?

\[(x+8)^2 = x^2 + (x+7)^2\]

nw expand this.......
\[(a+b)^2 = a^2 + 2ab + b^2\]

(x+8)^2=x^2+(x+7)^2

lol.... ) (x)^2 + (x+7)^2 = (8+x)^2

okay?? then you do??????

|dw:1348501546848:dw|

May I know what made no sense to you?

Which part you don't understand?

the expansion parts.

Do you know how to expand (a+b)^2?

no. im homeschooled, i havn't even done pythagereum theory much.

x^2+16x+64=x^2+x^2+14x+49

i can not see the equations from the eqtation button!!!!!!!!!!

equation button is for you to type latex...

*type in latex

Can you see what I've typed in latex?

|dw:1348503516047:dw|

yes.

Now, can you expand a(a+b) +b(a+b) ?

how?

Distributing a into a+b and b into a+b

then??

Expand it first.

how?

a(a+b) = a(a) + a(b) = a^2 + ab
Can you try b(a+b) now?

is it:
b(a+b)=b(a)+b(b)=b^2+ba?

Yes!
Now combine them
What is a(a+b) + b(a+b) ?

(a(a+b) = a(a) + a(b) = a^2 + ab)+(b(a+b)=b(a)+b(b)=b^2+ba)?

Nope not really.. can you try again?

what would it be then?

someone help me please!

|dw:1348510329568:dw|