Here's the question you clicked on:
Turner
If tan x ̊= 3/y and cos x ̊= y/z , what is the value of sin x°? sin x°= 3/z sin x°= 3y sin x°= z/3 sin x°= 3z
Remember that tan(x) = sin(x) / cos(x)
\[\large{\tan x = \frac{3}{y}}\] \[\large{\cos x = \frac{y}{z}}\] since : \(\large{\tan x = \frac{\sin x}{\cos x}}\) @Turner put the given values of tan x and cos x in the formula (above) ... Can you tell me what do you get ?
is it \[\frac{ 3z }{ y ^{2} }\] ???
\[\large{\frac{3}{y}=\frac{\sin x }{\frac{y}{z}}}\] \[\large{\frac{3}{y}\times \frac{y}{z}=\sin x}\] \[\large{\frac{3}{z}=\sin x}\]
Check your process again @Turner ...
You're always welcome. Best of luck.