anonymous
  • anonymous
b^2+16b+1=0 is the answer b=8+3root7?
Mathematics
katieb
  • katieb
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get this expert

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this
and thousands of other questions

mathslover
  • mathslover
\[\large{x=\frac{-b \pm \sqrt{b^2-4ac}}{2a}}\] are you sure that you applied this formula?
anonymous
  • anonymous
It says complete the square do i still do the quadratic formula?
radar
  • radar
If requests that you complete the square, you should do so. I think you have it almost whipped, check your signs.

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

anonymous
  • anonymous
ahh it should be a - 8
mathslover
  • mathslover
no if it says complete the square then : \[\large{b^2+16b+1=0}\] \[\large{b^2+16b+1+64=0+64}\] \[\large{(b+8)^2 = 63}\] \[\large{b = \sqrt{63} -8}\]
radar
  • radar
I came up with:\[-8\pm3\sqrt{7}\]
mathslover
  • mathslover
\[\large{b = -8 \pm \sqrt{63}}\] \[\large{b = -8 \pm 3\sqrt{7}}\]
radar
  • radar
Note that \[\sqrt{63}=\sqrt{9}\sqrt{7}\]
mathslover
  • mathslover
got it @tvise ?
anonymous
  • anonymous
Yes. When i originally did it i did not isolate the variable so when i re did it i forgot to change signs
mathslover
  • mathslover
no problem, take care of it from now, :)
radar
  • radar
Good luck, and the "signs" can bite you. lol

Looking for something else?

Not the answer you are looking for? Search for more explanations.