Open study

is now brainly

With Brainly you can:

  • Get homework help from millions of students and moderators
  • Learn how to solve problems with step-by-step explanations
  • Share your knowledge and earn points by helping other students
  • Learn anywhere, anytime with the Brainly app!

A community for students.

Use the intermediate value theorem to show that the equation e^(-x)=x has at least one real solution.

Mathematics
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get this expert

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this and thousands of other questions

@j814wong - do you know what the intermediate value theorem states?
Sorry for the late reply. Yes. If f is continuous on a closed interval [a,b] and k is any number between f(a) and f(b), inclusive, then there is at least one number x in the interval [a,b] such that f(x)=k That's the formal definition as opposed to the one I'd give on teh spot.
this is what you do consider \(e^{-x}-x\) on the interval say \([0,1]\)

Not the answer you are looking for?

Search for more explanations.

Ask your own question

Other answers:

at \(x=0\) you get 1 at \(x=1\) you get \(\frac{1}{e}-1\) since 1 is positive, and \(\frac{1}{e}-1\) is negative, by the ivt it must be zero somewhere in between 0 and 1
What does the \ mean?

Not the answer you are looking for?

Search for more explanations.

Ask your own question