Looking for something else?

Not the answer you are looking for? Search for more explanations.

## More answers

Looking for something else?

Not the answer you are looking for? Search for more explanations.

- anonymous

integral from 1 to 2 of 1/(2x -1) dx

At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga.
Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus.
Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get our expert's

answer on brainly

SEE EXPERT ANSWER

Get your **free** account and access **expert** answers to this

and **thousands** of other questions.

Get your **free** account and access **expert** answers to this and **thousands** of other questions

- anonymous

integral from 1 to 2 of 1/(2x -1) dx

- chestercat

I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!

Get this expert

answer on brainly

SEE EXPERT ANSWER

Get your **free** account and access **expert** answers to this

and **thousands** of other questions

- anonymous

Basically is x^2 - x and just substitute 1 and 2 into the function and add them.

- anonymous

my answer was ln(2x-1)/2 then i substituted 1 and 3, dont you have to change the bounds, because you are using u-substitution?

- AccessDenied

Yes, when you apply a \(u\)-substitution, you will change the bounds according to the choice of \(u\).

Looking for something else?

Not the answer you are looking for? Search for more explanations.

- anonymous

Acess denied is that what you get ln(2x-1)/2 for your solution?

- AccessDenied

Well, when you change the bounds of the integral, you don't need to back-substitute. The bounds are changed to accommodate the variable change to u. If you back-substitute, you'd just use the original bounds for x.
Your antiderivative of 1/(2x - 1) being ln(2x - 1)/2 is correct, though.

- anonymous

thank you.

- AccessDenied

so...
integral from 1 to 2 of 1/(2x - 1) dx
u = 2x - 1
du = 2 dx --> 1/2 du = dx
= integral from u(1) to u(2) of 1/u * 1/2 du
= 1/2 integral from 1 to 3 of 1/u du
= 1/2 * ln(u) from 1 to 3 ### here we use the bounds 1 and 3 for u.
= 1/2 * ln(3) - 1/2* ln(1)
= 1/2 * ln(3)

- anonymous

why dont you sub u=2x-1 back in?

- AccessDenied

Well, if we substitute it back in, we'd basically be changing the variable again. We need to change the bounds around to do that.
Notice, however, that our function x of u:
u = 2x - 1
u + 1 = 2x
x = (u + 1)/2
Is the inverse of the u-function.
We change these bounds:
x(1) = (1 + 1)/2
= 1
x(3) = (3 + 1)/2
= 2
You would just get your original boundaries back. There would be no point in that boundary change if we just back-substitute...

- anonymous

I see. So when doing u-substitution, and we change the bounds, DO NOT CHANGE BACK! Leave the bounds the same and sub in for u. Yes?

- AccessDenied

Yes, you only need to do the u-substitution and change the bounds once. Then the definite integral proceeds as normal

- anonymous

thanks.

- AccessDenied

You're welcome! :)

Looking for something else?

Not the answer you are looking for? Search for more explanations.