what does this (~) mean in set notations?

At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get our expert's

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this and thousands of other questions.

A community for students.

what does this (~) mean in set notations?

Mathematics
See more answers at brainly.com
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get this expert

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this and thousands of other questions

not
~A=not A or elements which are not in A
means the same as ( \(\neg\) )

Not the answer you are looking for?

Search for more explanations.

Ask your own question

Other answers:

when used like this " ~A ", is that in relativity to the universal set?
yep
|dw:1348742799395:dw|
let's say A={1,2,3...} ~A={0 and all negative integers} right?
Yes :) if A is a subset of Integers
interesting :) thanks!
if the universal set is all numbers then 1/2 is also in ~A
|dw:1348742895139:dw|
your text is missing...
S=integers A=(1, 2,3,4 ..) ~A=(...-2, -1, 0)
oh ok, thanks :) that clears things up x you guys are awesome :)
Glad to help :)

Not the answer you are looking for?

Search for more explanations.

Ask your own question