mathslover
  • mathslover
Can |x| ever be negative in any case?
Mathematics
  • Stacey Warren - Expert brainly.com
Hey! We 've verified this expert answer for you, click below to unlock the details :)
SOLVED
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
schrodinger
  • schrodinger
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
anonymous
  • anonymous
nope
anonymous
  • anonymous
yes
anonymous
  • anonymous
|x| can't

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

mathslover
  • mathslover
|i| is negative or positive
anonymous
  • anonymous
=1 is positive
anonymous
  • anonymous
Absolutely! My X is negative 50% of the time.
anonymous
  • anonymous
modulus i is positive
mathslover
  • mathslover
\[|\sqrt{-1}| = ?\] 0^2 + 1^2 = 1 ?
anonymous
  • anonymous
\[\text{magnitude of everything}\ge0\]
mathslover
  • mathslover
|(a+ib)^2| = a^2+b^2 ?
mathslover
  • mathslover
|a+ib|^2 = a^2+b^2
hartnn
  • hartnn
|a+ib| = sqrt(a^2+b^2)
mathslover
  • mathslover
Yep.. Thanks @mukushla and @Libniz and @hartnn
anonymous
  • anonymous
no problem
anonymous
  • anonymous
no because |x| = √(X² ) so even if you get any number + or - the number will be squared first making it to be + then it will be rooted to give you the number

Looking for something else?

Not the answer you are looking for? Search for more explanations.