Ace school

with brainly

  • Get help from millions of students
  • Learn from experts with step-by-step explanations
  • Level-up by helping others

A community for students.

would lim(x approches infinity) (sqrt(x^2+1))/(2x+1) be DNE since it would basically be infinity/infinity?

Mathematics
See more answers at brainly.com
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Join Brainly to access

this expert answer

SEE EXPERT ANSWER

To see the expert answer you'll need to create a free account at Brainly

What is DNE?
does not exist
That is indeterminate form, so you can't say it doesn't exist. You will have to manipulate it to use L'hopital's

Not the answer you are looking for?

Search for more explanations.

Ask your own question

Other answers:

\[\lim_{x\rightarrow\infty}\frac{\sqrt{x^2+1}}{2x+1}=\lim_{x\rightarrow\infty}\frac{\sqrt{\frac {x^2}{x^2}+\frac1{x^2}}}{\frac{2x}x+\frac1x}=\lim_{x\rightarrow\infty}\frac{\sqrt{1}}{2}=\frac12\]
@redham L'hopital's is not the best idea.
No, you can map a limit here.\[\lim_{x \rightarrow \infty}\Big(\frac{\sqrt{x^2+1}}{2x+1}\Big)=\frac{\lim_{x \rightarrow \infty}\Big(\frac{d\sqrt{x^2+1}}{dx}\Big)}{\lim_{x \rightarrow \infty}\Big(\frac{d(2x+1)}{dx}\Big)}\]
how do i simplify to sqrt(1)/2
\[\lim_{x\rightarrow\infty}\frac{\sqrt{\frac {x^2}{x^2}+\frac1{x^2}}}{\frac{2x}x+\frac1x}=\lim_{x\rightarrow\infty}\frac{\sqrt{1+1/x^2}}{2+1/x}\] \(1/x^2\) and \(1/x\) are almost 0 when x goes to infinity. so only 1in numerator and 2 in denominator are left.
@klimenkov I was actually thinking of squaring the denominator under the radical and then using L'Hopital's. Not from the start
thnaks to all of you
one more if y'all are still here how to calculate the derivative of f(x)=sinx
i know the derivative of sinx is cosx but i dont know how to prove it with the derivative funtion
\[\lim_{\Delta x\rightarrow0}\frac{\sin(x+\Delta x)-\sin x}{\Delta x}=\lim_{\Delta x\rightarrow0}\frac{\sin x \cos\Delta x+\cos x\sin \Delta x-\sin x}{\Delta x}=\]\[\lim_{\Delta x\rightarrow0}\frac{\sin x (\cos\Delta x-1)}{\Delta x}+\lim_{\Delta x\rightarrow0}\frac{\cos x\sin \Delta x}{\Delta x}=\cos x\] Try to get it. Why is it so? Why does the first limit equals to 0 and why does the second equals to cos x?
im not exactly sure...
http://www.zweigmedia.com/RealWorld/trig/triglim.html

Not the answer you are looking for?

Search for more explanations.

Ask your own question